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Abstract

In this paper, we propose a new non-parametric DEA scheme for
measuring efficiency in the presence of undesirable outputs, based on a
slack-based measure (SBM) developed in Tone (2001). We further ex-
tend our scheme to cope with non-separable desirable and undesirable
outputs. Then we compare our approach with some other methods
proposed for this purpose thus far.
Keywords: Undesirable outputs, non-separable outputs, DEA, SBM

1 Introduction

In accordance with the environmental conservation awareness in our mod-
ern society, undesirable outputs of productions and social activities, e.g.,
air pollutants and hazardous waste, have been widely recognized as societal
evils. Thus, development of technologies with less undesirable outputs is an
important subject of concern in every area of production. DEA (data en-
velopment analysis) usually assumes that producing more outputs relative
to less input resources is a criterion of efficiency. In the presence of unde-
sirable outputs, however, technologies with more good (desirable) outputs
and less bad (undesirable) outputs relative to less input resources should be
recognized as efficient. In the DEA literature, several authors have proposed
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methods for this purpose, e.g., Färe et al.(1989), Scheel (2001), and Seiford
and Zhu (2002), among others.

This paper deals with the same problem by applying a slacks-based mea-
sure of efficiency (SBM) that the author proposed in Tone (2001). The SBM
is non-radial and non-oriented, and utilizes input and output slacks directly
in producing an efficiency measure. In this paper, SBM is modified so as to
account for undesirable outputs.

This paper unfolds as follows. Section 2 extends the SBM to the case
including undesirable outputs. The economic interpretation of the model is
demonstrated in Section 3 that enhances the rationale of the method. Exten-
sions to various returns to scale assumptions, non-separable output problems
and weight restrictions are discussed in Section 4. Illustrative examples are
presented in Section 5. Then, we compare our method with previously pro-
posed ones in Section 6. Section 7 concludes this paper.

2 An SBM with undesirable outputs

Suppose that there are n DMUs (decision making units) each having three
factors: inputs, good outputs and bad (undesirable) outputs, as represented
by three vectors x ∈ Rm, yg ∈ Rs1 and yb ∈ Rs2 , respectively. We define the
matrices X, Y g and Y b as follows.

X = [x1, · · · , xn] ∈ Rm×n, Y g = [yg
1, · · · , yg

n] ∈ Rs1×n, and Y b =
[yb

1, · · · , yb
n] ∈ Rs2×n. We assume X > 0, Y b > 0 and Y b > 0.

The production possibility set (P ) is defined by

P = {(x, yg, yb)|x ≥ Xλ, yg ≤ Y gλ, yb ≥ Y bλ, λ ≥ 0}, (1)

where λ ∈ Rn is the intensity vector. Notice that the above definition cor-
responds to the constant returns to scale technology. We discuss the other
return to scale cases in Section 4.

Definition 1 (Efficient DMU) A DMUo (xo, y
g
o, y

b
o) is efficient in the pres-

ence of undesirable outputs if there is no vector (x, yg, yb) ∈ P such that
xo ≥ x, yg

o ≤ yg and yb
o ≥ yb with at least one strict inequality.

In accordance with this definition, we modify the SBM in Tone (2001) as
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follows.

[SBM] ρ∗ = min
1− 1

m

∑m
i=1

s−i
xio

1 + 1
s1+s2

(∑s1

r=1
sg
r

yg
ro

+
∑s2

r=1
sb
r

yb
ro

) (2)

subject to xo = Xλ + s− (3)

yg
o = Y gλ− sg (4)

yb
o = Y bλ + sb (5)

s− ≥ 0, sg ≥ 0, sb ≥ 0, λ ≥ 0.

The vectors s− ∈ Rm and sb ∈ Rs2 correspond to excesses in inputs and bad
outputs, respectively, while sg ∈ Rs1 expresses shortages in good outputs.
The objective function (2) strictly decreases with respect to s−i (∀i), sg

r (∀r)
and sb

r (∀r) and the objective value satisfies 0 < ρ∗ ≤ 1. Let an optimal
solution of the above program be (λ∗, s−∗, sg∗, sb∗). Then, we have:

Theorem 1 The DMUo is efficient in the presence of undesirable outputs if
and only if ρ∗ = 1, i.e., s−∗ = 0, sg∗ = 0 and sb∗ = 0.

If the DMUo is inefficient, i.e., ρ∗ < 1, it can be improved and become
efficient by deleting the excesses in inputs and bad outputs, and augmenting
the shortfalls in good outputs via the following SBM-projection:

xo ← xo − s−∗ (6)

yg
o ← yg

o + sg∗ (7)

yb
o ← yb

o − sb∗ (8)

Using the transformation by Charnes and Cooper (1962), we arrive at an
equivalent linear program in t, Λ, S−, Sg and Sb as displayed below.

[LP] τ ∗ = min t− 1

m

m∑
i=1

S−
i

xio
(9)

subject to 1 = t +
1

s1 + s2

( s1∑
r=1

Sg
r

yg
ro

+
s2∑

r=1

Sb
r

yb
ro

)
(10)

xot = XΛ + S− (11)

yg
ot = Y gΛ− Sg (12)

yb
ot = Y bΛ + Sb (13)

S− ≥ 0, Sg ≥ 0, Sb ≥ 0, Λ ≥ 0, t > 0. (14)
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Let an optimal solution of [LP] be (t∗, Λ∗, S−∗, Sg∗, Sb∗). Then we have
an optimal solution of [SBM] as defined by

ρ∗ = τ ∗, λ∗ = Λ∗/t∗, s−∗ = S−∗/t∗, sg∗ = Sg∗/t∗, Sb∗ = sb∗/t∗. (15)

(See Tone (2001) for detail). The existence of (t∗, Λ∗, S−∗, Sg∗, Sb∗) with
t∗ > 0 is guaranteed by [LP].

3 Economic interpretations

We have the dual program of [LP] as follows:

ξ∗ = max ξ (16)

subject to ξ + vxo − ugyg
o + ubyb

o = 1 (17)

−vX + ugY g − ubY b ≤ 0

v ≥ 1

m
[1/xo]

ug ≥ ξ

s
[1/yg

o]

ub ≥ ξ

s
[1/yb

o],

where s = s1 + s2 and the notation [1/xo] stands for the row vector (1/x1o,
· · · , 1/xmo).

The dual variable vectors v ∈ Rm, ug ∈ Rs1 and ub ∈ Rs2 correspond
to the constraints (11), (12) and (13), respectively. By eliminating ξ, this
program is equivalent to the following:

[DualLP] max ugyg
o − vxo − ubyb

o (18)

subject to ugY g − vX − ubY b ≤ 0 (19)

v ≥ 1

m
[1/xo] (20)

ug ≥ 1 + ugyg
o − vxo − ubyb

o

s
[1/yg

o] (21)

ub ≥ 1 + ugyg
o − vxo − ubyb

o

s
[1/yb

o]. (22)

The dual variables v and ub can be interpreted as the virtual prices (costs)
of inputs and bad outputs, respectively, while ug denotes the price of good
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outputs. The dual program aims at obtaining the optimal virtual costs and
prices for DMUo so that the profit ugyg−vx−ubyb does not exceed zero for
every DMU (including DMUo) and maximizes the profit ugyg

o − vxo − ubyb
o

for the DMUo concerned. Apparently, the optimal profit is at best zero and
hence ξ∗ = 1 for the SBM efficient DMUs.

Constraints (20), (21) and (22) restrict the dual variables to the positive
orthant. Using this framework, we can incorporate other important devel-
opments related to the virtual dual variables into the SBM model, e.g., the
assurance region methods (Thompson et al. (1986)). These modifications
will contribute to the enhancement of the potential application of the model
substantially.

4 Extensions

This section first discusses the returns to scale issues, and then extends our
scheme to deal with non-separable ‘good’ and ‘bad’ outputs. Lastly, the
weight restriction problem, i.e., setting different weights to inputs/outputs is
analyzed.

4.1 Returns to scale (RTS) issues

Although we discussed our bad outputs model under the constant returns
to scale (CRS) assumption, we can incorporate other RTS by adding the
following constraint to [SBM] and hence to the definition of the production
possibility set P ,

L ≤ eλ ≤ U, (23)

where e = (1, · · · , 1) ∈ Rn and, L(≤ 1) and U(≥ 1) are respectively the
lower and upper bounds to the intensity λ.

The cases (L = 1, U = 1), (L = 0, U = 1) and (L = 1, U = ∞)
correspond to the variable (VRS), the decreasing (DRS) and the increasing
(IRS) RTS, respectively.

The definition of the efficiency status is the same as described in [Defi-
nition 1] and Theorem 1 holds in these cases, too. The addition of the RTS
constraint (23) brings out modification in [DualLP] among which we observe
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the VRS case, i.e., eλ = 1, as representative. The [DualLP] turns out to:

[DualLP-VRS] max ugyg
o − vxo − ubyb

o + w (24)

subject to ugY g − vX − ubY b + we ≤ 0

v ≥ 1

m
[1/xo] (25)

ug ≥ 1 + ugyg
o − vxo − ubyb

o + w

s
[1/yg

o] (26)

ub ≥ 1 + ugyg
o − vxo − ubyb

o + w

s
[1/yb

o], (27)

where w ∈ R is the dual variable corresponding to the constraint eλ = 1.
Apparently, the optimal objective function value is at best zero and attains
zero if and only if the DMUo is efficient under the VRS. Let an optimal
solution for [DualLP-VRS] be (v∗, ug∗, ub∗, w∗), then, if DMUo is efficient,
we have the following inequality.

ug∗yg
o − v∗xo − ub∗yb

o ≥ ug∗yg
j − v∗xj − ub∗yb

j (∀j). (28)

Thus, the price interpretation of the role of the dual variables remains valid
in this case, too.

4.2 Non-separable ‘good’ and ‘bad’ outputs

It is often observed that a certain ‘bad’ outputs are not separable from the
corresponding ‘good’ outputs. Hence, reducing bad outputs is inevitably ac-
companied by reduction in good outputs. In this section, we discuss this
non-separable case. For this, we decompose the set of good and bad out-
puts (Y g, Y b) into (Y Sg, Y Sb) and (Y NSg, Y NSb), where (Y Sg ∈ Rs11×n, Y Sb ∈
Rs12×n) and (Y NSg ∈ Rs21×n, Y NSb ∈ Rs22×n) denote the separable and non-
separable good and bad outputs, respectively. For the separable outputs
(Y Sg, Y Sb), we have the same structure of production as (Y g, Y b) in P . How-
ever, the non-separable outputs (Y NSg, Y NSb) need handling differently. A
reduction of the bad outputs yNSb is designated by αyNSb with 0 ≤ α ≤ 1,
which is accompanied by a proportionate reduction in the good outputs yNSg

as denoted by αyNSg. Although in this case we assume the same proportion-
ate rate α in bad and good outputs, we can set other relationships between
the two, e.g., αyNSb and βyNSg with 0 ≤ α, β ≤ 1.
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Now, the new production possibility set PNS under the VRS is defined
by:

PNS =
{

(x, ySg, ySb, yNSg, yNSb)|
x ≥ Xλ, ySg ≤ Y Sgλ, ySb ≥ Y Sbλ, yNSg ≤ Y NSgλ,

yNSb ≥ Y NSbλ, eλ = 1, λ ≥ 0
}
. (29)

Basically this definition is a natural extension of P in (1). We alter the
definition of the efficiency status in the non-separable case as follows:

Definition 2 (NS-efficient) A DMUo (xo, y
Sg
o , ySb

o , yNSg
o , yNSb

o ) is called
NS-efficient if and only if (1) for any α (0 ≤ α < 1), we have

(xo, y
Sg
o , ySb

o , αyNSg
o , αyNSb

o ) /∈ PNS,

and (2) there is no (x, ySg, ySb, yNSg, yNSb) ∈ PNS such that

xo ≥ x, ySg
o ≤ ySg, ySb

o ≥ ySb, yNSg
o = yNSg, yNSb

o = yNSb

with at least one strict inequality.

An SBM with non-separable outputs can be implemented by the program in
(λ, s−, sSg, sSb, α) as below:

[SBM-NS]

ρ∗ = min
1− 1

m

∑m
i=1

s−i
xio

1 + 1
s

(∑s11

r=1
sSg
r

ySg
ro

+
∑s12

r=1
sSb
r

ySb
ro

+ (s21 + s22)(1− α)
) (30)

subject to

xo = Xλ + s−

ySg
o = Y Sgλ− sSg

ySb
o = Y Sbλ + sSb

αyNSg
o ≤ Y NSgλ (31)

αyNSb
o ≥ Y NSbλ (32)

eλ = 1

s− ≥ 0, sSg ≥ 0, sSb ≥ 0, λ ≥ 0, 0 ≤ α ≤ 1,

where s = s11 + s12 + s21 + s22.
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The objective function is strictly monotone decreasing with respect to
s−i (∀i), sSg

r (∀r), sSb
r (∀r) and α. Let an optimal solution for [SBM-NS] be

(ρ∗, λ∗, s−∗, sSg∗, sSb∗, α∗), then we have 0 < ρ∗ ≤ 1 and the following
theorem holds:

Theorem 2 The DMUo is NS-efficient if and only if ρ∗ = 1, i.e., s−∗ =
0, sSg∗ = 0, sSb∗ = 0 and α∗ = 1.

If the DMUo is NS-inefficient, i.e., ρ∗ < 1, it can be improved and become
NS-efficient by the following NS-projection:

xo ← xo − s−∗ (33)

ySg
o ← ySg

o + sSg∗ (34)

ySb
o ← ySb

o − sSb∗ (35)

yNSg
o ← α∗yNSg

o (36)

yNSb
o ← α∗yNSb

o . (37)

It should be noted that, from (31) and (32), it holds that

sNSg∗ ≡ −α∗yNSg
o + Y NSgλ∗ ≥ 0 (38)

sNSb∗ ≡ α∗yNSb
o − Y NSbλ∗ ≥ 0. (39)

This means that the some of slacks in non-separable good and bad outputs
may remain positive even after the projection, and that these slacks are
not accounted for in the NS-efficiency score. This is because we assume
proportionate reduction (α∗) in these outputs. Thus, we apply the SBM to
the separable outputs, whereas we employ the radial approach to the non-
separable outputs.

In the case that the proportionate reduction rate (α) has a lower bound,
we replace the constraint 0 ≤ α ≤ 1 by αmin ≤ α ≤ 1, where αmin is the
lower bound for the reduction rate of the non-separable good (bad) outputs.

We further observe the dual of [SBM-NS] after transforming the fractional
program into the corresponding equivalent linear program in the similar man-
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ner as in the case [LP].

[DualLP-NS]

max ξ (40)

subject to

ξ = 1 + uSgySg
o + uNSgyNSg

o − vxo − uSbySb
o − uNSbyNSb

o + w

uSgY Sg + uNSgY NSg − vX − uSbY Sb − uNSbY NSb + we ≤ 0

v ≥ 1

m
[1/xo], uSg ≥ ξ

s
[1/ySg

o ], uSb ≥ ξ

s
[1/ySb

o ] (41)

uNSg ≥ 0, uNSb ≥ 0

with additional constraints corresponding to 0 ≤ α ≤ 1. (42)

Thus, we have the same economic interpretations as in the case [DualLP]. We
are looking for the optimal virtual prices v (for inputs), uSg (for separable
good outputs), uNSg (for non-separable good outputs), uSb (for separable
bad outputs) and uNSb (for non-separable bad outputs) under the VRS that
maximize the virtual profit uSgySg

o +uNSgyNSg
o −vxo−uSbySb

o −uNSbyNSb
o +

w, while keeping the virtual profit of every DMU (including DMUo) non-
positive.

4.3 Imposing weights to inputs and/or outputs

If putting preference (or importance) on input/output items is requested, we
can impose weights to the objective function in (2) as follows:

[SBM] ρ∗ = min
1− 1

m

∑m
i=1

w−
i s−i
xio

1 + 1
s1+s2

( ∑s1

r=1
w

g
r s

g
r

yg
ro

+
∑s2

r=1
wb

rsb
r

yb
ro

) , (43)

where wi, wg
r and wb

r are the weights to the input i, the desirable output
r, and the undesirable output r, respectively, and

∑m
i=1 w−

i = m, w−
i ≥

0 (∀i), ∑s1

r=1 wg
r +

∑s2

r=1 wb
r = s1 + s2, wg

r ≥ 0 (∀r), , wb
r ≥ 0 (∀r).

5 Illustrative examples

We present numerical examples that illustrate the aforementioned schemes.
All sample problems were solved under the variable returns to scale (VRS)
assumption, i.e., eλ = 1.
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5.1 Separable bad outputs models

Table 1 exhibits a simple data set composed of a single input (with value=1)
and two outputs: one desirable and one undesirable. We solved this problem

Table 1: Separable bad outputs case: Data set
Input Output

Desirable Undesirable
DMU x yGood yBad

A 1 1 1
B 1 2 1
C 1 6 2
D 1 8 4
E 1 9 7
F 1 5 2
G 1 4 3
H 1 6 4
I 1 4 6

by employing the weight selection described in Section 4.3. We placed three
ratios of weights on ‘good’ and ‘bad’ outputs: (1:0.3), (1:1) and (1:3). Table
2 reports the results: the efficiency (ρ∗), and the projected good and bad
outputs. DMUs B, C, D and E are efficient in this separable outputs model.
It is observed that, as the weight moves from good to bad, the emphasis of
projection changes from enlargement of the good output to reduction of the
bad output. Figures 1, 2 and 3 illustrate these changes.
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Table 2: Separable bad outputs case: Results
Weights to Good and Bad Outputs

1:0.3 1:1 1:3
Projected Projected Projected

ρ∗ yGood yBad ρ∗ yGood yBad ρ∗ yGood yBad

A 0.565 2 1 0.667 2 1 0.8 2 1
B 1 - - 1 - - 1 - -
C 1 - - 1 - - 1 - -
D 1 - - 1 - - 1 - -
E 1 - - 1 - - 1 - -
F 0.867 6 2 0.909 6 2 0.914 5 1.75
G 0.634 7 3 0.706 6 2 0.727 6 2
H 0.796 8 4 0.80 6 2 0.727 6 2
I 0.527 8.67 6 0.60 8 4 0.615 6 2

Figure 1: yGood:yBad = 1:0.3

Figure 2: yGood:yBad = 1:1

Figure 3: yGood:yBad = 1:3

5.2 Non-separable outputs model

Suppose that the outputs in Table 1 are non-separable. In this case, we can-
not reduce the bad output without worsening the good output. We applied
[SBM-NS] to this data set. Table 3 exhibits the results of two cases: one with
the lower bound of reduction rate αmin = 0 and the other with αmin = 0.8.

In this model, the NS-efficient DMUs are A, B and C while D and E are
no longer efficient. Figure 4 shows the projection of inefficient DMUs in the
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Table 3: Non-separable outputs case: Results
αmin = 0 αmin = 0.8

Projected Projected
ρ∗ α∗ yGood yBad ρ∗ α∗ yGood yBad

A 1 1 - - 1 1 - -
B 1 1 - - 1 1 - -
C 1 1 - - 1 1 - -
D 0.571 0.25 2 1 0.833 0.8 6.4 3.2
E 0.538 0.14 1.29 1 0.833 0.8 7.2 5.6
F 0.75 0.67 3.33 1.33 0.833 0.8 4 1.6
G 0.6 0.33 1.33 1 0.833 0.8 3.2 2.4
H 0.571 0.25 1.5 1 0.833 0.8 4.8 3.2
I 0.545 0.17 0.667 1 0.833 0.8 3.2 4.8

case in which αmin = 0. DMU D is projected to D1 (=B). DMUs E, H, G and
I are projected onto the efficient portion of the line segment passing through
A and B, while DMU F is directed to F1 on the line segment connecting B
and C. They are all radially projected to the frontiers. In the case where
αmin = 0.8, all inefficient DMUs are eventually proportionally reduced in the
good and bad outputs by the rate 0.8.

Figure 4: Non-separable outputs

5.3 An example with both separable and non-separable

outputs

Table 4 exhibits a data set with both non-separable outputs (yGood and yBad)
and separable outputs (zGood and zBad) that are produced from two inputs
x1 and x2. Although the separable outputs can be increased or decreased in-
dependently, the non-separable outputs can be changed only proportionally.
(In this case we assume a proportional reduction.)

We applied the [SBM-NS] model in (30) to this data set with αmin = 0.7
and obtained the results as displayed in Table 5. DMU B, C and D are NS-
efficient. DMU A has DMU B as its reference and reduces inputs to x1 → 2
and x2 → 3 by deleting input surpluses, and enlarges the separable zGood

to 6, while non-separable outputs remain unchanged. Remaining inefficient
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Table 4: Non-separable and separable outputs case: Data set
Input Output

Non-separable Separable
DMU x1 x2 yGood yBad zGood zBad

A 3 4 1 1 2 2
B 2 3 2 1 6 1
C 5 1 6 2 8 1
D 3 2 8 4 10 5
E 5 5 9 7 6 4
F 6 5 5 2 7 5
G 7 3 4 3 2 1
H 3 7 6 4 3 1
I 5 8 4 6 4 2

DMUs E, F, G, H and I reduced non-separable outputs proportionally by
the rate α∗, as cited in Table 5. The reduction rate is at the lower bound
(α∗ = αmin = 0.7) for DMUs E, G, H and I, while α∗ = 0.75 for DMU F.
Inefficient DMUs projected other inputs and outputs non-radially.

6 Comparisons with other methods

Several authors have proposed efficiency measures in the presence of undesir-
able outputs. A conventional and traditional way to handle this problem is
to shift undesirable outputs to inputs and to apply traditional DEA models
to the data set. In the VRS environment, Seiford and Zhu (2002) proposed
a method that first multiplies each undesirable output by -1 and then finds
a proper translation vector to let all negative undesirable outputs be posi-
tive. Interestingly, Scheel (2001) pointed out that these two transformations
(position change and translation) give the same efficient frontiers, although
the Seiford and Zhu method is only valid under the VRS condition. How-
ever, resulting efficiency scores for inefficient DMUs are different according to
the model employed. Another conventional way is to invert the undesirable
output value and treat it as a desirable one. This operation may cause de-
formation of the efficient frontiers due to the non-linear transformation and
hence gives a different identification of the efficiency status and efficiency
score.
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Table 5: Non-separable and separable outputs case: Results (αmin = 0.7)
Projection

Input Output
Score Non-separable Separable

DMU ρ∗ α∗ x1 x2 yGood yBad zGood zBad

A 0.35 1 2 3 1 1 6 1
B 1 1 2 3 2 1 6 1
C 1 1 5 1 6 2 8 1
D 1 1 3 2 8 4 10 5
E 0.41 0.7 2.72 2.28 6.3 4.9 8.87 3.87
F 0.37 0.75 3.5 2 3.75 1.5 7 1
G 0.35 0.7 5 1 2.8 2.1 8 1
H 0.62 0.7 3 3.85 4.2 2.8 5.48 1
I 0.29 0.7 2.13 2.87 2.8 4.2 6.53 1.53

Färe et al. (1989) was the first paper to treat this subject systematically.
They treat desirable and undesirable outputs asymmetrically, resulting in
an enhanced hyperbolic output efficiency measure. This approach needs to
solve a non-linear programming problem. As for the non-separable models,
Scheel (2001) proposed a radial and output-oriented method, whereas Färe
et al. (2003) developed a directional vector approach in output-orientation.
The non-separable outputs models have different efficient frontiers than the
separable outputs case. In discussing efficiency, it is important to define the
production possibility set and its efficient frontier, and then to identify the
method of measuring the efficiency of inefficient DMUs.

We would like to observe this problem from another standpoint. Most
(but not all) DEA models can be categorized into four classes: (1) radial
and oriented, (2) radial and non-oriented, (3) non-radial and oriented, and
(4) non-radial and non-oriented. Here, ‘radial’ means that a proportional
reduction or enlargement of inputs/outputs is the main concern in measur-
ing efficiency, while ‘oriented’ indicates input-oriented or output-oriented.
Consequently, radial models neglect slacks and hence, when dealing with
undesirable outputs, slacks in undesirable outputs are not accounted in the
efficiency measure. This is a crucial shortcoming of radial models. On the
other hand, the major concern of input (output)-oriented models focuses on
the input (output)-side efficiency, and output (input)-side is a minor subject
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in measuring efficiency. Thus, only the non-radial and non-oriented models
can capture all aspects of efficiency. From this viewpoint, it should be noted
that our [SBM-NS] model can deal with inputs and outputs efficiency in the
presence of both non-separable and separable outputs in a unified manner in
any RTS environment.

7 Conclusion

In accordance with the relatively recent increase in environmental protection
awareness, it is crucial to measure the relative efficiency of enterprises within
a framework in which the amounts of both desirable and undesirable outputs
are taken into account. In this paper we have proposed a new SBM scheme for
this purpose. The new scheme provides the full efficiency score 1 to a DMU if
and only if the DMU is efficient, and assigns a score less than 1 to inefficient
DMUs depending on the relative magnitudes of slacks in inputs/outputs.
The score is strictly monotone decreasing with respect to an increase in any
slacks. Furthermore, the proposed method processes the given data set as it
is, i.e., neither translation nor inversion is operated, and no position change
(from output to input) is required.

This scheme can be extended to cope with co-existence of non-separable
desirable and undesirable outputs as well as separable ones. It belongs to a
non-radial and non-oriented index and has a reasonable LP dual interpreta-
tion as a profit maximization engine.

A major concern of our society is how to better take into considerations
both economic and ecological issues. For this, as Korhonen and Luptacik
(2003) remind us, we need new indicators to measure the economic perfor-
mance of the firm and the national economy, which take into account envi-
ronmental aspects as well. We hope the new methodology developed in this
paper can contribute to this purpose.
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